Papers
Topics
Authors
Recent
2000 character limit reached

Spectral Identifiability for Interpretable Probe Geometry (2511.16288v1)

Published 20 Nov 2025 in stat.ML and cs.LG

Abstract: Linear probes are widely used to interpret and evaluate neural representations, yet their reliability remains unclear, as probes may appear accurate in some regimes but collapse unpredictably in others. We uncover a spectral mechanism behind this phenomenon and formalize it as the Spectral Identifiability Principle (SIP), a verifiable Fisher-inspired condition for probe stability. When the eigengap separating task-relevant directions is larger than the Fisher estimation error, the estimated subspace concentrates and accuracy remains consistent, whereas closing this gap induces instability in a phase-transition manner. Our analysis connects eigengap geometry, sample size, and misclassification risk through finite-sample reasoning, providing an interpretable diagnostic rather than a loose generalization bound. Controlled synthetic studies, where Fisher quantities are computed exactly, confirm these predictions and show how spectral inspection can anticipate unreliable probes before they distort downstream evaluation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: