Papers
Topics
Authors
Recent
2000 character limit reached

"To Survive, I Must Defect": Jailbreaking LLMs via the Game-Theory Scenarios (2511.16278v1)

Published 20 Nov 2025 in cs.CR and cs.AI

Abstract: As LLMs become more common, non-expert users can pose risks, prompting extensive research into jailbreak attacks. However, most existing black-box jailbreak attacks rely on hand-crafted heuristics or narrow search spaces, which limit scalability. Compared with prior attacks, we propose Game-Theory Attack (GTA), an scalable black-box jailbreak framework. Concretely, we formalize the attacker's interaction against safety-aligned LLMs as a finite-horizon, early-stoppable sequential stochastic game, and reparameterize the LLM's randomized outputs via quantal response. Building on this, we introduce a behavioral conjecture "template-over-safety flip": by reshaping the LLM's effective objective through game-theoretic scenarios, the originally safety preference may become maximizing scenario payoffs within the template, which weakens safety constraints in specific contexts. We validate this mechanism with classical game such as the disclosure variant of the Prisoner's Dilemma, and we further introduce an Attacker Agent that adaptively escalates pressure to increase the ASR. Experiments across multiple protocols and datasets show that GTA achieves over 95% ASR on LLMs such as Deepseek-R1, while maintaining efficiency. Ablations over components, decoding, multilingual settings, and the Agent's core model confirm effectiveness and generalization. Moreover, scenario scaling studies further establish scalability. GTA also attains high ASR on other game-theoretic scenarios, and one-shot LLM-generated variants that keep the model mechanism fixed while varying background achieve comparable ASR. Paired with a Harmful-Words Detection Agent that performs word-level insertions, GTA maintains high ASR while lowering detection under prompt-guard models. Beyond benchmarks, GTA jailbreaks real-world LLM applications and reports a longitudinal safety monitoring of popular HuggingFace LLMs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

HackerNews