Papers
Topics
Authors
Recent
2000 character limit reached

Layer-wise Noise Guided Selective Wavelet Reconstruction for Robust Medical Image Segmentation (2511.16162v1)

Published 20 Nov 2025 in cs.CV and cs.GR

Abstract: Clinical deployment requires segmentation models to stay stable under distribution shifts and perturbations. The mainstream solution is adversarial training (AT) to improve robustness; however, AT often brings a clean--robustness trade-off and high training/tuning cost, which limits scalability and maintainability in medical imaging. We propose \emph{Layer-wise Noise-Guided Selective Wavelet Reconstruction (LNG-SWR)}. During training, we inject small, zero-mean noise at multiple layers to learn a frequency-bias prior that steers representations away from noise-sensitive directions. We then apply prior-guided selective wavelet reconstruction on the input/feature branch to achieve frequency adaptation: suppress noise-sensitive bands, enhance directional structures and shape cues, and stabilize boundary responses while maintaining spectral consistency. The framework is backbone-agnostic and adds low additional inference overhead. It can serve as a plug-in enhancement to AT and also improves robustness without AT. On CT and ultrasound datasets, under a unified protocol with PGD-$L_{\infty}/L_{2}$ and SSAH, LNG-SWR delivers consistent gains on clean Dice/IoU and significantly reduces the performance drop under strong attacks; combining LNG-SWR with AT yields additive gains. When combined with adversarial training, robustness improves further without sacrificing clean accuracy, indicating an engineering-friendly and scalable path to robust segmentation. These results indicate that LNG-SWR provides a simple, effective, and engineering-friendly path to robust medical image segmentation in both adversarial and standard training regimes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube