Papers
Topics
Authors
Recent
2000 character limit reached

CoSP: Reconfigurable Multi-State Metamaterial Inverse Design via Contrastive Pretrained Large Language Model (2511.16135v1)

Published 20 Nov 2025 in physics.optics and cs.AI

Abstract: Metamaterials, known for their ability to manipulate light at subwavelength scales, face significant design challenges due to their complex and sophisticated structures. Consequently, deep learning has emerged as a powerful tool to streamline their design process. Reconfigurable multi-state metamaterials (RMMs) with adjustable parameters can switch their optical characteristics between different states upon external stimulation, leading to numerous applications. However, existing deep learning-based inverse design methods fall short in considering reconfigurability with multi-state switching. To address this challenge, we propose CoSP, an intelligent inverse design method based on contrastive pretrained LLM. By performing contrastive pretraining on multi-state spectrum, a well-trained spectrum encoder capable of understanding the spectrum is obtained, and it subsequently interacts with a pretrained LLM. This approach allows the model to preserve its linguistic capabilities while also comprehending Maxwell's Equations, enabling it to describe material structures with target optical properties in natural language. Our experiments demonstrate that CoSP can design corresponding thin-film metamaterial structures for arbitrary multi-state, multi-band optical responses, showing great potentials in the intelligent design of RMMs for versatile applications.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.