Papers
Topics
Authors
Recent
2000 character limit reached

SUNAC: Source-aware Unified Neural Audio Codec (2511.16126v1)

Published 20 Nov 2025 in eess.AS and eess.SP

Abstract: Neural audio codecs (NACs) provide compact representations that can be leveraged in many downstream applications, in particular LLMs. Yet most NACs encode mixtures of multiple sources in an entangled manner, which may impede efficient downstream processing in applications that need access to only a subset of the sources (e.g., analysis of a particular type of sound, transcription of a given speaker, etc). To address this, we propose a source-aware codec that encodes individual sources directly from mixtures, conditioned on source type prompts. This enables user-driven selection of which source(s) to encode, including separately encoding multiple sources of the same type (e.g., multiple speech signals). Experiments show that our model achieves competitive resynthesis and separation quality relative to a cascade of source separation followed by a conventional NAC, with lower computational cost.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.