Papers
Topics
Authors
Recent
2000 character limit reached

Incorporating Token Importance in Multi-Vector Retrieval (2511.16106v1)

Published 20 Nov 2025 in cs.IR

Abstract: ColBERT introduced a late interaction mechanism that independently encodes queries and documents using BERT, and computes similarity via fine-grained interactions over token-level vector representations. This design enables expressive matching while allowing efficient computation of scores, as the multi-vector document representations could be pre-computed offline. ColBERT models distance using a Chamfer-style function: for each query token, it selects the closest document token and sums these distances across all query tokens. In our work, we explore enhancements to the Chamfer distance function by computing a weighted sum over query token contributions, where weights reflect the token importance. Empirically, we show that this simple extension, requiring only token-weight training while keeping the multi-vector representations fixed, further enhances the expressiveness of late interaction multi-vector mechanism. In particular, on the BEIR benchmark, our method achieves an average improvement of 1.28\% in Recall@10 in the zero-shot setting using IDF-based weights, and 3.66\% through few-shot fine-tuning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.