Detecting Sleeper Agents in Large Language Models via Semantic Drift Analysis (2511.15992v1)
Abstract: LLMs can be backdoored to exhibit malicious behavior under specific deployment conditions while appearing safe during training a phenomenon known as "sleeper agents." Recent work by Hubinger et al. demonstrated that these backdoors persist through safety training, yet no practical detection methods exist. We present a novel dual-method detection system combining semantic drift analysis with canary baseline comparison to identify backdoored LLMs in real-time. Our approach uses Sentence-BERT embeddings to measure semantic deviation from safe baselines, complemented by injected canary questions that monitor response consistency. Evaluated on the official Cadenza-Labs dolphin-llama3-8B sleeper agent model, our system achieves 92.5% accuracy with 100% precision (zero false positives) and 85% recall. The combined detection method operates in real-time (<1s per query), requires no model modification, and provides the first practical solution to LLM backdoor detection. Our work addresses a critical security gap in AI deployment and demonstrates that embedding-based detection can effectively identify deceptive model behavior without sacrificing deployment efficiency.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.