Papers
Topics
Authors
Recent
2000 character limit reached

UniDGF: A Unified Detection-to-Generation Framework for Hierarchical Object Visual Recognition (2511.15984v1)

Published 20 Nov 2025 in cs.CV

Abstract: Achieving visual semantic understanding requires a unified framework that simultaneously handles object detection, category prediction, and attribute recognition. However, current advanced approaches rely on global similarity and struggle to capture fine-grained category distinctions and category-specific attribute diversity, especially in large-scale e-commerce scenarios. To overcome these challenges, we introduce a detection-guided generative framework that predicts hierarchical category and attribute tokens. For each detected object, we extract refined ROI-level features and employ a BART-based generator to produce semantic tokens in a coarse-to-fine sequence covering category hierarchies and property-value pairs, with support for property-conditioned attribute recognition. Experiments on both large-scale proprietary e-commerce datasets and open-source datasets demonstrate that our approach significantly outperforms existing similarity-based pipelines and multi-stage classification systems, achieving stronger fine-grained recognition and more coherent unified inference.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: