Papers
Topics
Authors
Recent
2000 character limit reached

Breaking the Bottleneck with DiffuApriel: High-Throughput Diffusion LMs with Mamba Backbone (2511.15927v1)

Published 19 Nov 2025 in cs.LG and cs.AI

Abstract: Diffusion-based LLMs have recently emerged as a promising alternative to autoregressive generation, yet their reliance on Transformer backbones limits inference efficiency due to quadratic attention and KV-cache overhead. In this work, we introduce DiffuApriel, a masked diffusion LLM built on a bidirectional Mamba backbone that combines the diffusion objective with linear-time sequence modeling. DiffuApriel matches the performance of Transformer-based diffusion models while achieving up to 4.4x higher inference throughput for long sequences with a 1.3B model. We further propose DiffuApriel-H, a hybrid variant that interleaves attention and mamba layers, offering up to 2.6x throughput improvement with balanced global and local context modeling. Our results demonstrate that bidirectional state-space architectures serve as strong denoisers in masked diffusion LMs, providing a practical and scalable foundation for faster, memory-efficient text generation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 16 likes about this paper.