Multi-Agent LLM Orchestration Achieves Deterministic, High-Quality Decision Support for Incident Response
Abstract: LLMs promise to accelerate incident response in production systems, yet single-agent approaches generate vague, unusable recommendations. We present MyAntFarm.ai, a reproducible containerized framework demonstrating that multi-agent orchestration fundamentally transforms LLM-based incident response quality. Through 348 controlled trials comparing single-agent copilot versus multi-agent systems on identical incident scenarios, we find that multi-agent orchestration achieves 100% actionable recommendation rate versus 1.7% for single-agent approaches, an 80 times improvement in action specificity and 140 times improvement in solution correctness. Critically, multi-agent systems exhibit zero quality variance across all trials, enabling production SLA commitments impossible with inconsistent single-agent outputs. Both architectures achieve similar comprehension latency (approx.40s), establishing that the architectural value lies in deterministic quality, not speed. We introduce Decision Quality (DQ), a novel metric capturing validity, specificity, and correctness properties essential for operational deployment that existing LLM metrics do not address. These findings reframe multi-agent orchestration from a performance optimization to a production-readiness requirement for LLM-based incident response. All code, Docker configurations, and trial data are publicly available for reproduction.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.