Papers
Topics
Authors
Recent
2000 character limit reached

Quant-Trim in Practice: Improved Cross-Platform Low-Bit Deployment on Edge NPUs (2511.15300v1)

Published 19 Nov 2025 in cs.LG

Abstract: Specialized edge accelerators rely on low-bit quantization, but vendor compilers differ in scaling, clipping, and kernel support, often as black boxes. The same floating-point (FP) checkpoint can therefore yield inconsistent accuracy across backends, forcing practitioners to tweak flags or refactor models to vendor-friendly operator subsets. We introduce Quant-Trim, a training-phase method that produces a hardware-neutral checkpoint robust to backend and precision choices. It combines progressive fake quantization to align training with the deployed integer grid and reverse pruning to tame outlier-driven scale inflation while preserving learnability. Quant-Trim is agnostic to quantization schemes (symmetric/asymmetric,per-tensor/per-channel, INT8/INT4) and requires no vendor-specific graph changes.Across models and tasks, it narrows the FP,low-bit gap, reduces dependence on compiler heuristics/calibration, and avoids per-backend retraining. We report accuracy and edge metrics latency, throughput, energy/inference, and cost under static/dynamic activation scaling and varying operator coverage.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.