Papers
Topics
Authors
Recent
2000 character limit reached

Graph Query Networks for Object Detection with Automotive Radar (2511.15271v1)

Published 19 Nov 2025 in cs.CV and cs.LG

Abstract: Object detection with 3D radar is essential for 360-degree automotive perception, but radar's long wavelengths produce sparse and irregular reflections that challenge traditional grid and sequence-based convolutional and transformer detectors. This paper introduces Graph Query Networks (GQN), an attention-based framework that models objects sensed by radar as graphs, to extract individualized relational and contextual features. GQN employs a novel concept of graph queries to dynamically attend over the bird's-eye view (BEV) space, constructing object-specific graphs processed by two novel modules: EdgeFocus for relational reasoning and DeepContext Pooling for contextual aggregation. On the NuScenes dataset, GQN improves relative mAP by up to +53%, including a +8.2% gain over the strongest prior radar method, while reducing peak graph construction overhead by 80% with moderate FLOPs cost.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.