Papers
Topics
Authors
Recent
2000 character limit reached

Frustration indices of signed subcubic graphs (2511.15226v1)

Published 19 Nov 2025 in math.CO

Abstract: The frustration index of a signed graph is defined as the minimum number of negative edges among all switching-equivalent signatures. This can be regarded as a generalization of the classical \textsc{Max-Cut} problem in graphs, as the \textsc{Max-Cut} problem is equivalent to determining the frustration index of signed graphs with all edges being negative signs. In this paper, we prove that the frustration index of an $n$-vertex signed connected simple subcubic graph, other than $(K_4, -)$, is at most $\frac{3n + 2}{8}$, and we characterize the family of signed graphs for which this bound is attained. This bound can be further improved to $\frac{n}{3}$ for signed $2$-edge-connected simple subcubic graphs, with the exceptional signed graphs being characterized. As a corollary, every signed $2$-edge-connected simple cubic graph on at least $10$ vertices and with $m$ edges has its frustration index at most $\frac{2}{9}m$, where the upper bound is tight as it is achieved by an infinite family of signed cubic graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: