Papers
Topics
Authors
Recent
2000 character limit reached

SWR-Viz: AI-assisted Interactive Visual Analytics Framework for Ship Weather Routing (2511.15182v1)

Published 19 Nov 2025 in cs.HC and cs.AI

Abstract: Efficient and sustainable maritime transport increasingly depends on reliable forecasting and adaptive routing, yet operational adoption remains difficult due to forecast latencies and the need for human judgment in rapid decision-making under changing ocean conditions. We introduce SWR-Viz, an AI-assisted visual analytics framework that combines a physics-informed Fourier Neural Operator wave forecast model with SIMROUTE-based routing and interactive emissions analytics. The framework generates near-term forecasts directly from current conditions, supports data assimilation with sparse observations, and enables rapid exploration of what-if routing scenarios. We evaluate the forecast models and SWR-Viz framework along key shipping corridors in the Japan Coast and Gulf of Mexico, showing both improved forecast stability and realistic routing outcomes comparable to ground-truth reanalysis wave products. Expert feedback highlights the usability of SWR-Viz, its ability to isolate voyage segments with high emission reduction potential, and its value as a practical decision-support system. More broadly, this work illustrates how lightweight AI forecasting can be integrated with interactive visual analytics to support human-centered decision-making in complex geospatial and environmental domains.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.