Papers
Topics
Authors
Recent
2000 character limit reached

String Graphs: Product Structure and Localised Representations (2511.15156v1)

Published 19 Nov 2025 in math.CO and cs.DM

Abstract: We investigate string graphs through the lens of graph product structure theory, which describes complicated graphs as subgraphs of strong products of simpler building blocks. A graph $G$ is called a string graph if its vertices can be represented by a collection $\mathcal{C}$ of continuous curves (called a string representation of $G$) in a surface so that two vertices are adjacent in $G$ if and only if the corresponding curves in $\mathcal{C}$ cross. We prove that every string graph with bounded maximum degree in a fixed surface is isomorphic to a subgraph of the strong product of a graph with bounded treewidth and a path. This extends recent product structure theorems for string graphs. Applications of this result are presented. This product structure theorem ceases to be true if the bounded maximum degree' assumption is relaxed tobounded degeneracy'. For string graphs in the plane, we give an alternative proof of this result. Specifically, we show that every string graph in the plane has a `localised' string representation where the number of crossing points on the curve representing a vertex $u$ is bounded by a function of the degree of $u$. Our proof of the product structure theorem also leads to a result about the treewidth of outerstring graphs, which qualitatively extends a result of Fox and Pach [Eur. J. Comb. 2012] about outerstring graphs with bounded maximum degree. We extend our result to outerstring graphs defined in arbitrary surfaces.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: