Beyond Uncertainty Sets: Leveraging Optimal Transport to Extend Conformal Predictive Distribution to Multivariate Settings (2511.15146v1)
Abstract: Conformal prediction (CP) constructs uncertainty sets for model outputs with finite-sample coverage guarantees. A candidate output is included in the prediction set if its non-conformity score is not considered extreme relative to the scores observed on a set of calibration examples. However, this procedure is only straightforward when scores are scalar-valued, which has limited CP to real-valued scores or ad-hoc reductions to one dimension. The problem of ordering vectors has been studied via optimal transport (OT), which provides a principled method for defining vector-ranks and multivariate quantile regions, though typically with only asymptotic coverage guarantees. We restore finite-sample, distribution-free coverage by conformalizing the vector-valued OT quantile region. Here, a candidate's rank is defined via a transport map computed for the calibration scores augmented with that candidate's score. This defines a continuum of OT problems for which we prove that the resulting optimal assignment is piecewise-constant across a fixed polyhedral partition of the score space. This allows us to characterize the entire prediction set tractably, and provides the machinery to address a deeper limitation of prediction sets: that they only indicate which outcomes are plausible, but not their relative likelihood. In one dimension, conformal predictive distributions (CPDs) fill this gap by producing a predictive distribution with finite-sample calibration. Extending CPDs beyond one dimension remained an open problem. We construct, to our knowledge, the first multivariate CPDs with finite-sample calibration, i.e., they define a valid multivariate distribution where any derived uncertainty region automatically has guaranteed coverage. We present both conservative and exact randomized versions, the latter resulting in a multivariate generalization of the classical Dempster-Hill procedure.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.