Papers
Topics
Authors
Recent
2000 character limit reached

WaveFuse-AL: Cyclical and Performance-Adaptive Multi-Strategy Active Learning for Medical Images (2511.15132v1)

Published 19 Nov 2025 in cs.CV and cs.LG

Abstract: Active learning reduces annotation costs in medical imaging by strategically selecting the most informative samples for labeling. However, individual acquisition strategies often exhibit inconsistent behavior across different stages of the active learning cycle. We propose Cyclical and Performance-Adaptive Multi-Strategy Active Learning (WaveFuse-AL), a novel framework that adaptively fuses multiple established acquisition strategies-BALD, BADGE, Entropy, and CoreSet throughout the learning process. WaveFuse-AL integrates cyclical (sinusoidal) temporal priors with performance-driven adaptation to dynamically adjust strategy importance over time. We evaluate WaveFuse-AL on three medical imaging benchmarks: APTOS-2019 (multi-class classification), RSNA Pneumonia Detection (binary classification), and ISIC-2018 (skin lesion segmentation). Experimental results demonstrate that WaveFuse-AL consistently outperforms both single-strategy and alternating-strategy baselines, achieving statistically significant performance improvements (on ten out of twelve metric measurements) while maximizing the utility of limited annotation budgets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.