Distributed primal-dual algorithm for constrained multi-agent reinforcement learning under coupled policies
Abstract: In this work, we investigate constrained multi-agent reinforcement learning (CMARL), where agents collaboratively maximize the sum of their local objectives while satisfying individual safety constraints. We propose a framework where agents adopt coupled policies that depend on both local states and parameters, as well as those of their $κp$-hop neighbors, with $κ_p>0$ denoting the coupling distance. A distributed primal-dual algorithm is further developed under this framework, wherein each agent has access only to state-action pairs within its $2κ_p$-hop neighborhood and to reward information within its $κ+ 2κ_p$-hop neighborhood, with $κ> 0$ representing the truncation distance. Moreover, agents are not permitted to directly share their true policy parameters or Lagrange multipliers. Instead, each agent constructs and maintains local estimates of these variables for other agents and employs such estimates to execute its policy. Additionally, these estimates are further updated and exchanged exclusively through an independent, time-varying networks, which enhances the overall system security. We establish that, with high probability, our algorithm can achieve an $ε$-first-order stationary convergence with an approximation error of $\mathcal{O}(γ{\frac{κ+1}{κ{p}}})$ for discount factor $γ\in(0,1)$. Finally, simulations in GridWorld environment are conducted to demonstrate the effectiveness of the proposed algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.