Papers
Topics
Authors
Recent
2000 character limit reached

Logit-Based Losses Limit the Effectiveness of Feature Knowledge Distillation (2511.14981v1)

Published 18 Nov 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Knowledge distillation (KD) methods can transfer knowledge of a parameter-heavy teacher model to a light-weight student model. The status quo for feature KD methods is to utilize loss functions based on logits (i.e., pre-softmax class scores) and intermediate layer features (i.e., latent representations). Unlike previous approaches, we propose a feature KD framework for training the student's backbone using feature-based losses exclusively (i.e., without logit-based losses such as cross entropy). Leveraging recent discoveries about the geometry of latent representations, we introduce a knowledge quality metric for identifying which teacher layers provide the most effective knowledge for distillation. Experiments on three image classification datasets with four diverse student-teacher pairs, spanning convolutional neural networks and vision transformers, demonstrate our KD method achieves state-of-the-art performance, delivering top-1 accuracy boosts of up to 15% over standard approaches. We publically share our code to facilitate future work at https://github.com/Thegolfingocto/KD_wo_CE.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com