Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Nested Hierarchies: Pioneering Self-Evolution in Machine Learning Architectures for Lifelong Intelligence (2511.14823v1)

Published 18 Nov 2025 in cs.LG and cs.CV

Abstract: Contemporary machine learning models, including LLMs, exhibit remarkable capabilities in static tasks yet falter in non-stationary environments due to rigid architectures that hinder continual adaptation and lifelong learning. Building upon the nested learning paradigm, which decomposes models into multi-level optimization problems with fixed update frequencies, this work proposes dynamic nested hierarchies as the next evolutionary step in advancing artificial intelligence and machine learning. Dynamic nested hierarchies empower models to autonomously adjust the number of optimization levels, their nesting structures, and update frequencies during training or inference, inspired by neuroplasticity to enable self-evolution without predefined constraints. This innovation addresses the anterograde amnesia in existing models, facilitating true lifelong learning by dynamically compressing context flows and adapting to distribution shifts. Through rigorous mathematical formulations, theoretical proofs of convergence, expressivity bounds, and sublinear regret in varying regimes, alongside empirical demonstrations of superior performance in language modeling, continual learning, and long-context reasoning, dynamic nested hierarchies establish a foundational advancement toward adaptive, general-purpose intelligence.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 7 likes about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube