Papers
Topics
Authors
Recent
2000 character limit reached

AutoTool: Efficient Tool Selection for Large Language Model Agents (2511.14650v1)

Published 18 Nov 2025 in cs.AI

Abstract: LLM agents have emerged as powerful tools for automating complex tasks by leveraging the reasoning and decision-making abilities of LLMs. However, a major bottleneck in current agent frameworks lies in the high inference cost of tool selection, especially in approaches like ReAct that repeatedly invoke the LLM to determine which tool to use at each step. In this work, we propose AutoTool, a novel graph-based framework that bypasses repeated LLM inference by exploiting a key empirical observation: tool usage inertia - the tendency of tool invocations to follow predictable sequential patterns. AutoTool constructs a directed graph from historical agent trajectories, where nodes represent tools and edges capture transition probabilities, effectively modeling the inertia in tool selection. It further integrates parameter-level information to refine tool input generation. By traversing this structured representation, AutoTool efficiently selects tools and their parameters with minimal reliance on LLM inference. Extensive experiments across diverse agent tasks demonstrate that AutoTool reduces inference costs by up to 30% while maintaining competitive task completion rates, offering a practical and scalable enhancement for inference-heavy frameworks. Our work highlights the promise of integrating statistical structure into LLM agent design for greater efficiency without sacrificing performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.