DIR-TIR: Dialog-Iterative Refinement for Text-to-Image Retrieval (2511.14449v1)
Abstract: This paper addresses the task of interactive, conversational text-to-image retrieval. Our DIR-TIR framework progressively refines the target image search through two specialized modules: the Dialog Refiner Module and the Image Refiner Module. The Dialog Refiner actively queries users to extract essential information and generate increasingly precise descriptions of the target image. Complementarily, the Image Refiner identifies perceptual gaps between generated images and user intentions, strategically reducing the visual-semantic discrepancy. By leveraging multi-turn dialogues, DIR-TIR provides superior controllability and fault tolerance compared to conventional single-query methods, significantly improving target image hit accuracy. Comprehensive experiments across diverse image datasets demonstrate our dialogue-based approach substantially outperforms initial-description-only baselines, while the synergistic module integration achieves both higher retrieval precision and enhanced interactive experience.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.