Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multi-view Phase-aware Pedestrian-Vehicle Incident Reasoning Framework with Vision-Language Models

Published 18 Nov 2025 in cs.CV and cs.AI | (2511.14120v1)

Abstract: Pedestrian-vehicle incidents remain a critical urban safety challenge, with pedestrians accounting for over 20% of global traffic fatalities. Although existing video-based systems can detect when incidents occur, they provide little insight into how these events unfold across the distinct cognitive phases of pedestrian behavior. Recent vision-LLMs (VLMs) have shown strong potential for video understanding, but they remain limited in that they typically process videos in isolation, without explicit temporal structuring or multi-view integration. This paper introduces Multi-view Phase-aware Pedestrian-Vehicle Incident Reasoning (MP-PVIR), a unified framework that systematically processes multi-view video streams into structured diagnostic reports through four stages: (1) event-triggered multi-view video acquisition, (2) pedestrian behavior phase segmentation, (3) phase-specific multi-view reasoning, and (4) hierarchical synthesis and diagnostic reasoning. The framework operationalizes behavioral theory by automatically segmenting incidents into cognitive phases, performing synchronized multi-view analysis within each phase, and synthesizing results into causal chains with targeted prevention strategies. Particularly, two specialized VLMs underpin the MP-PVIR pipeline: TG-VLM for behavioral phase segmentation (mIoU = 0.4881) and PhaVR-VLM for phase-aware multi-view analysis, achieving a captioning score of 33.063 and up to 64.70% accuracy on question answering. Finally, a designated LLM is used to generate comprehensive reports detailing scene understanding, behavior interpretation, causal reasoning, and prevention recommendations. Evaluation on the Woven Traffic Safety dataset shows that MP-PVIR effectively translates multi-view video data into actionable insights, advancing AI-driven traffic safety analytics for vehicle-infrastructure cooperative systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.