Papers
Topics
Authors
Recent
2000 character limit reached

Real-Time Mobile Video Analytics for Pre-arrival Emergency Medical Services (2511.14119v1)

Published 18 Nov 2025 in cs.MM and cs.AI

Abstract: Timely and accurate pre-arrival video streaming and analytics are critical for emergency medical services (EMS) to deliver life-saving interventions. Yet, current-generation EMS infrastructure remains constrained by one-to-one video streaming and limited analytics capabilities, leaving dispatchers and EMTs to manually interpret overwhelming, often noisy or redundant information in high-stress environments. We present TeleEMS, a mobile live video analytics system that enables pre-arrival multimodal inference by fusing audio and video into a unified decision-making pipeline before EMTs arrive on scene. TeleEMS comprises two key components: TeleEMS Client and TeleEMS Server. The TeleEMS Client runs across phones, smart glasses, and desktops to support bystanders, EMTs en route, and 911 dispatchers. The TeleEMS Server, deployed at the edge, integrates EMS-Stream, a communication backbone that enables smooth multi-party video streaming. On top of EMSStream, the server hosts three real-time analytics modules: (1) audio-to-symptom analytics via EMSLlama, a domain-specialized LLM for robust symptom extraction and normalization; (2) video-to-vital analytics using state-of-the-art rPPG methods for heart rate estimation; and (3) joint text-vital analytics via PreNet, a multimodal multitask model predicting EMS protocols, medication types, medication quantities, and procedures. Evaluation shows that EMSLlama outperforms GPT-4o (exact-match 0.89 vs. 0.57) and that text-vital fusion improves inference robustness, enabling reliable pre-arrival intervention recommendations. TeleEMS demonstrates the potential of mobile live video analytics to transform EMS operations, bridging the gap between bystanders, dispatchers, and EMTs, and paving the way for next-generation intelligent EMS infrastructure.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.