Papers
Topics
Authors
Recent
2000 character limit reached

CascadedViT: Cascaded Chunk-FeedForward and Cascaded Group Attention Vision Transformer (2511.14111v1)

Published 18 Nov 2025 in cs.CV and cs.AI

Abstract: Vision Transformers (ViTs) have demonstrated remarkable performance across a range of computer vision tasks; however, their high computational, memory, and energy demands hinder deployment on resource-constrained platforms. In this paper, we propose \emph{Cascaded-ViT (CViT)}, a lightweight and compute-efficient vision transformer architecture featuring a novel feedforward network design called \emph{Cascaded-Chunk Feed Forward Network (CCFFN)}. By splitting input features, CCFFN improves parameter and FLOP efficiency without sacrificing accuracy. Experiments on ImageNet-1K show that our \emph{CViT-XL} model achieves 75.5\% Top-1 accuracy while reducing FLOPs by 15\% and energy consumption by 3.3\% compared to EfficientViT-M5. Across various model sizes, the CViT family consistently exhibits the lowest energy consumption, making it suitable for deployment on battery-constrained devices such as mobile phones and drones. Furthermore, when evaluated using a new metric called \emph{Accuracy-Per-FLOP (APF)}, which quantifies compute efficiency relative to accuracy, CViT models consistently achieve top-ranking efficiency. Particularly, CViT-L is 2.2\% more accurate than EfficientViT-M2 while having comparable APF scores.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.