Papers
Topics
Authors
Recent
2000 character limit reached

GCA-ResUNet:Image segmentation in medical images using grouped coordinate attention (2511.14087v1)

Published 18 Nov 2025 in cs.CV and cs.AI

Abstract: Medical image segmentation underpins computer-aided diagnosis and therapy by supporting clinical diagnosis, preoperative planning, and disease monitoring. While U-Net style convolutional neural networks perform well due to their encoder-decoder structures with skip connections, they struggle to capture long-range dependencies. Transformer-based variants address global context but often require heavy computation and large training datasets. This paper proposes GCA-ResUNet, an efficient segmentation network that integrates Grouped Coordinate Attention (GCA) into ResNet-50 residual blocks. GCA uses grouped coordinate modeling to jointly encode global dependencies across channels and spatial locations, strengthening feature representation and boundary delineation while adding minimal parameter and FLOP overhead compared with self-attention. On the Synapse dataset, GCA-ResUNet achieves a Dice score of 86.11%, and on the ACDC dataset, it reaches 92.64%, surpassing several state-of-the-art baselines while maintaining fast inference and favorable computational efficiency. These results indicate that GCA offers a practical way to enhance convolutional architectures with global modeling capability, enabling high-accuracy and resource-efficient medical image segmentation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.