Papers
Topics
Authors
Recent
2000 character limit reached

Keeping Code-Aware LLMs Fresh: Full Refresh, In-Context Deltas, and Incremental Fine-Tuning (2511.14022v1)

Published 18 Nov 2025 in cs.SE, cs.AI, and cs.LG

Abstract: Modern codebases evolve continuously: files are renamed or deleted; public APIs drift; behavior shifts within otherwise familiar modules. A model trained yesterday to map a developer's natural-language question to the exact set of repository file paths that matter will degrade tomorrow, even if the questions themselves look unchanged. In this paper we study, at system scale and across several widely used repositories, how to keep such a model fresh without surrendering retention on earlier code. We frame freshness as a form of domain drift between a base snapshot and the current HEAD, and we compare three families of update strategies: (A) Full Refresh, retraining the entire model at the new snapshot; (B) In-Context Learning (ICL) that injects recent deltas (raw git diffs or concise English summaries) at inference; and (C) Incremental Fine-Tuning (Inc-FT) on delta-derived training sets, with carefully controlled NEW:OLD mixing to mitigate catastrophic forgetting. We contribute an alias-aware evaluation protocol that credits rename while never rewarding deleted paths, and a practical Forgetting Probe that quantifies residual emissions of obsolete paths. Across Flask, SQLAlchemy, Pandas, and Poetry, Inc-FT with old-aware mixes delivers the best overall balance on mixed sets, ICL with English delta summaries delivers the fastest new-code lift when training is not feasible, and Full Refresh remains the ceiling when maximum NEW accuracy matters. We also compare Git-diff Inc-FT to full-file Inc-FT, showing that diffs excel in rename/delete-heavy windows while full-file context wins in behavior-change-heavy windows.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.