Scene Graph-Guided Generative AI Framework for Synthesizing and Evaluating Industrial Hazard Scenarios (2511.13970v1)
Abstract: Training vision models to detect workplace hazards accurately requires realistic images of unsafe conditions that could lead to accidents. However, acquiring such datasets is difficult because capturing accident-triggering scenarios as they occur is nearly impossible. To overcome this limitation, this study presents a novel scene graph-guided generative AI framework that synthesizes photorealistic images of hazardous scenarios grounded in historical Occupational Safety and Health Administration (OSHA) accident reports. OSHA narratives are analyzed using GPT-4o to extract structured hazard reasoning, which is converted into object-level scene graphs capturing spatial and contextual relationships essential for understanding risk. These graphs guide a text-to-image diffusion model to generate compositionally accurate hazard scenes. To evaluate the realism and semantic fidelity of the generated data, a visual question answering (VQA) framework is introduced. Across four state-of-the-art generative models, the proposed VQA Graph Score outperforms CLIP and BLIP metrics based on entropy-based validation, confirming its higher discriminative sensitivity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.