QwenCLIP: Boosting Medical Vision-Language Pretraining via LLM Embeddings and Prompt tuning (2511.13876v1)
Abstract: Contrastive Language-Image Pretraining (CLIP) has demonstrated strong generalization for vision-language tasks in computer vision and medical domains, yet its text encoder accepts only up to 77 tokens, which limits its ability to represent long and information-rich radiology reports. Recent adaptations using domain-specific encoders, such as PubMedBERT or ClinicalBERT, mitigate this issue by leveraging medical corpora, but remain constrained by their limited input length (typically 512 tokens) and relatively shallow semantic understanding. To address these limitations, we propose QwenCLIP, a vision-language framework that replaces CLIP's text encoder with a LLM-based embedding module (e.g., Qwen3-Embedding) and introduces learnable prompts to enhance cross-modal alignment. By leveraging the extended context window and richer representations of LLMs, QwenCLIP captures comprehensive medical semantics from long-form clinical text, substantially improving medical image-text alignment and downstream performance on radiology benchmarks. Our code is publicly available at https://github.com/Wxy-24/QwenCLIP.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.