Papers
Topics
Authors
Recent
2000 character limit reached

A Trajectory-free Crash Detection Framework with Generative Approach and Segment Map Diffusion (2511.13795v1)

Published 17 Nov 2025 in cs.CV, cs.AI, and cs.RO

Abstract: Real-time crash detection is essential for developing proactive safety management strategy and enhancing overall traffic efficiency. To address the limitations associated with trajectory acquisition and vehicle tracking, road segment maps recording the individual-level traffic dynamic data were directly served in crash detection. A novel two-stage trajectory-free crash detection framework, was present to generate the rational future road segment map and identify crashes. The first-stage diffusion-based segment map generation model, Mapfusion, conducts a noisy-to-normal process that progressively adds noise to the road segment map until the map is corrupted to pure Gaussian noise. The denoising process is guided by sequential embedding components capturing the temporal dynamics of segment map sequences. Furthermore, the generation model is designed to incorporate background context through ControlNet to enhance generation control. Crash detection is achieved by comparing the monitored segment map with the generations from diffusion model in second stage. Trained on non-crash vehicle motion data, Mapfusion successfully generates realistic road segment evolution maps based on learned motion patterns and remains robust across different sampling intervals. Experiments on real-world crashes indicate the effectiveness of the proposed two-stage method in accurately detecting crashes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.