Papers
Topics
Authors
Recent
2000 character limit reached

Uncovering and Aligning Anomalous Attention Heads to Defend Against NLP Backdoor Attacks (2511.13789v1)

Published 16 Nov 2025 in cs.CR and cs.AI

Abstract: Backdoor attacks pose a serious threat to the security of LLMs, causing them to exhibit anomalous behavior under specific trigger conditions. The design of backdoor triggers has evolved from fixed triggers to dynamic or implicit triggers. This increased flexibility in trigger design makes it challenging for defenders to identify their specific forms accurately. Most existing backdoor defense methods are limited to specific types of triggers or rely on an additional clean model for support. To address this issue, we propose a backdoor detection method based on attention similarity, enabling backdoor detection without prior knowledge of the trigger. Our study reveals that models subjected to backdoor attacks exhibit unusually high similarity among attention heads when exposed to triggers. Based on this observation, we propose an attention safety alignment approach combined with head-wise fine-tuning to rectify potentially contaminated attention heads, thereby effectively mitigating the impact of backdoor attacks. Extensive experimental results demonstrate that our method significantly reduces the success rate of backdoor attacks while preserving the model's performance on downstream tasks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.