Imagine in Space: Exploring the Frontier of Spatial Intelligence and Reasoning Efficiency in Vision Language Models (2511.13782v1)
Abstract: LLMs and vision LLMs (VLMs), such as DeepSeek R1,OpenAI o3, and Gemini 2.5 Pro, have demonstrated remarkable reasoning capabilities across logical inference, problem solving, and decision making. However, spatial reasoning:a fundamental component of human cognition that includes mental rotation, navigation, and spatial relationship comprehension remains a significant challenge for current advanced VLMs. We hypothesize that imagination, the internal simulation of spatial states, is the dominant reasoning mechanism within a spatial world model. To test this hypothesis and systematically probe current VLM spatial reasoning mechanisms, we introduce SpatiaLite, a fully synthetic benchmark that jointly measures spatial reasoning accuracy and reasoning efficiency. Comprehensive experiments reveal three key findings. First, advanced VLMs predominantly rely on linguistic representations for reasoning and imagination, resulting in significant deficiencies on visual centric tasks that demand perceptual spatial relations and 3D geometry transformations such as mental rotation or projection prediction. Second, advanced VLMs exhibit severe inefficiency in their current spatial reasoning mechanisms, with token usage growing rapidly as transformation complexity increases. Third, we propose an Imagery Driven Framework (IDF) for data synthesis and training, which can implicitly construct an internal world model that is critical for spatial reasoning in VLMs. Building on SpatiaLite, this work delineates the spatial reasoning limits and patterns of advanced VLMs, identifies key shortcomings, and informs future advances
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.