Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nonparametric Estimation of Joint Entropy through Partitioned Sample-Spacing Method (2511.13602v1)

Published 17 Nov 2025 in math.ST and stat.ML

Abstract: We propose a nonparametric estimator of multivariate joint entropy based on partitioned sample spacings (PSS). The method extends univariate spacing ideas to multivariate settings by partitioning the sample space into localized cells and aggregating within-cell statistics, with strong consistency guarantees under mild conditions. In benchmarks across diverse distributions, PSS consistently outperforms k-nearest neighbor estimators and achieves accuracy competitive with recent normalizing flow-based methods, while requiring no training or auxiliary density modeling. The estimator scales favorably in moderately high dimensions (d = 10 to 40) and shows particular robustness to correlated or skewed distributions. These properties position PSS as a practical alternative to normalizing flow-based approaches, with broad potential in information-theoretic machine learning applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: