MDIntrinsicDimension: Dimensionality-Based Analysis of Collective Motions in Macromolecules from Molecular Dynamics Trajectories (2511.13550v1)
Abstract: Molecular dynamics (MD) simulations provide atomistic insights into the structure, dynamics, and function of biomolecules by generating time-resolved, high-dimensional trajectories. Analyzing such data benefits from estimating the minimal number of variables required to describe the explored conformational manifold, known as the intrinsic dimension (ID). We present MDIntrinsicDimension, an open-source Python package that estimates ID directly from MD trajectories by combining rotation- and translation-invariant molecular projections (e.g., backbone dihedrals and inter-residue distances) with state-of-the-art estimators. The package provides three complementary analysis modes: whole-molecule ID; sliding windows along the sequence; and per-secondary-structure elements. It computes both overall ID (a single summary value) and instantaneous, time-resolved ID that can reveal transitions and heterogeneity over time. We illustrate the approach on fast folding-unfolding trajectories from the DESRES dataset, demonstrating that ID complements conventional geometric descriptors by highlighting spatially localized flexibility and differences across structural segments.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.