Papers
Topics
Authors
Recent
2000 character limit reached

A Novel Hierarchical Integration Method for Efficient Model Merging in Medical LLMs (2511.13373v1)

Published 17 Nov 2025 in cs.LG and cs.AI

Abstract: LLMs face significant challenges in distributed healthcare, including consolidating specialized domain knowledge across institutions while maintaining privacy, reducing computational overhead, and preventing catastrophic forgetting during model updates.This paper presents a systematic evaluation of six parameter-space merging techniques applied to two architecturally compatible medical LLMs derived from the Mistral-7B base model. We introduce a novel hierarchical method that combines selective Optimal Transport (OT) alignment for attention layers with cosine similarity-weighted interpolation, designed to address permutation variance while minimizing computational overhead for edge deployment scenarios. Our study evaluates Task Arithmetic, Linear Averaging, DARE-TIES, DELLA, Breadcrumbs, and our Hierarchical approach across five medical benchmarks. Results demonstrate that architecturally compatible models benefit significantly from simple averaging methods, with Task Arithmetic achieving 45.80% accuracy on MedQA, outperforming complex pruning-based approaches. These findings offer critical insights for the deployment of distributed medical AI in resource-constrained IoT environments, where computational efficiency and model compatibility are paramount. Our work establishes that for architecturally compatible models, simple averaging provides a robust and computationally efficient baseline for knowledge consolidation, offering a pragmatic path forward for scalable medical AI systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.