Transformation-free linear simplicial-simplicial regression via constrained iterative reweighted least squares (2511.13296v1)
Abstract: Simplicial-simplicial regression refers to the regression setting where both the responses and predictor variables lie within the simplex space, i.e. they are compositional. \cite{fiksel2022} proposed a transformation-free lienar regression model, that minimizes the Kullback-Leibler divergence from the observed to the fitted compositions was recently proposed. To effectively estimate the regression coefficients the EM algorithm was employed. We formulate the model as a constrained logistic regression, in the spirit of \cite{tsagris2025}, and we estimate the regression coefficients using constrained iteratively reweighted least squares. This approach makes the estimation procedure significantly faster.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.