Papers
Topics
Authors
Recent
2000 character limit reached

Accelerated Distributional Temporal Difference Learning with Linear Function Approximation

Published 16 Nov 2025 in stat.ML and cs.LG | (2511.12688v1)

Abstract: In this paper, we study the finite-sample statistical rates of distributional temporal difference (TD) learning with linear function approximation. The purpose of distributional TD learning is to estimate the return distribution of a discounted Markov decision process for a given policy. Previous works on statistical analysis of distributional TD learning focus mainly on the tabular case. We first consider the linear function approximation setting and conduct a fine-grained analysis of the linear-categorical Bellman equation. Building on this analysis, we further incorporate variance reduction techniques in our new algorithms to establish tight sample complexity bounds independent of the support size $K$ when $K$ is large. Our theoretical results imply that, when employing distributional TD learning with linear function approximation, learning the full distribution of the return function from streaming data is no more difficult than learning its expectation. This work provide new insights into the statistical efficiency of distributional reinforcement learning algorithms.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.