Stability of intrinsic localized modes on the lattice with competing power nonlinearities (2511.12649v1)
Abstract: We study the discrete nonlinear Schrodinger equation with competing powers (p,q) satisfying 2 <= p < q. The physically relevant cases are given by (p,q) = (2,3), (p,q) = (3,4), and (p,q) = (3,5). In the anticontinuum limit, all intrinsic localized modes are compact and can be classified by their codes, which record one of two nonzero (smaller and larger) states and their sign alternations. By using the spectral stability analysis, we prove that the codes for larger states of the same sign are spectrally and nonlinearly (orbitally) stable, whereas the codes for smaller states of the alternating signs are spectrally stable but have eigenvalues of negative Krein signature. We also identify numerically the spectrally stable codes which consist of stacked combinations of the sign-definite larger states and the sign-alternating smaller states.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.