Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Dual-Layer Web Application Firewall (ADL-WAF) Leveraging Machine Learning for Enhanced Anomaly and Threat Detection (2511.12643v1)

Published 16 Nov 2025 in cs.CR, cs.LG, and cs.NI

Abstract: Web Application Firewalls are crucial for protecting web applications against a wide range of cyber threats. Traditional Web Application Firewalls often struggle to effectively distinguish between malicious and legitimate traffic, leading to limited efficacy in threat detection. To overcome these limitations, this paper proposes an Adaptive Dual-Layer WAF employing a two-layered Machine Learning model designed to enhance the accuracy of anomaly and threat detection. The first layer employs a Decision Tree (DT) algorithm to detect anomalies by identifying traffic deviations from established normal patterns. The second layer employs Support Vector Machine to classify these anomalies as either threat anomalies or benign anomalies. Our Adaptive Dual Layer WAF incorporates comprehensive data pre-processing and feature engineering techniques and has been thoroughly evaluated using five large benchmark datasets. Evaluation using these datasets shows that ADL WAF achieves a detection accuracy of 99.88% and a precision of 100%, significantly enhancing anomaly detection and reducing false positives. These findings suggest that integrating machine learning techniques into WAFs can substantially improve web application security by providing more accurate and efficient threat detection.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.