Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Orthogonal Separable Physics-Informed Neural Networks (2511.12613v1)

Published 16 Nov 2025 in quant-ph and physics.comp-ph

Abstract: This paper introduces Quantum Orthogonal Separable Physics-Informed Neural Networks (QO-SPINNs), a novel architecture for solving Partial Differential Equations, integrating quantum computing principles to address the computational bottlenecks of classical methods. We leverage a quantum algorithm for accelerating matrix multiplication within each layer, achieving a $\mathcal O(d\log d/ε2)$ complexity, a significant improvement over the classical $\mathcal O(d2)$ complexity, where $d$ is the dimension of the matrix, $ε$ the accuracy level. This is accomplished by using a Hamming weight-preserving quantum circuit and a unary basis for data encoding, with a comprehensive theoretical analysis of the overall architecture provided. We demonstrate the practical utility of our model by applying it to solve both forward and inverse PDE problems. Furthermore, we exploit the inherent orthogonality of our quantum circuits (which guarantees a spectral norm of 1) to develop a novel uncertainty quantification method. Our approach adapts the Spectral Normalized Gaussian Process for SPINNs, eliminating the need for the computationally expensive spectral normalization step. By using a Quantum Orthogonal SPINN architecture based on stacking, we provide a robust and efficient framework for uncertainty quantification (UQ) which, to our knowledge, is the first UQ method specifically designed for Separable PINNs. Numerical results based on classical simulation of the quantum circuits, are presented to validate the theoretical claims and demonstrate the efficacy of the proposed method.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.