Papers
Topics
Authors
Recent
2000 character limit reached

Symmetry-Aware Graph Metanetwork Autoencoders: Model Merging through Parameter Canonicalization (2511.12601v1)

Published 16 Nov 2025 in cs.LG and cs.AI

Abstract: Neural network parameterizations exhibit inherent symmetries that yield multiple equivalent minima within the loss landscape. Scale Graph Metanetworks (ScaleGMNs) explicitly leverage these symmetries by proposing an architecture equivariant to both permutation and parameter scaling transformations. Previous work by Ainsworth et al. (2023) addressed permutation symmetries through a computationally intensive combinatorial assignment problem, demonstrating that leveraging permutation symmetries alone can map networks into a shared loss basin. In this work, we extend their approach by also incorporating scaling symmetries, presenting an autoencoder framework utilizing ScaleGMNs as invariant encoders. Experimental results demonstrate that our method aligns Implicit Neural Representations (INRs) and Convolutional Neural Networks (CNNs) under both permutation and scaling symmetries without explicitly solving the assignment problem. This approach ensures that similar networks naturally converge within the same basin, facilitating model merging, i.e., smooth linear interpolation while avoiding regions of high loss. The code is publicly available on our GitHub repository.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.