Papers
Topics
Authors
Recent
2000 character limit reached

Can Small GenAI Language Models Rival Large Language Models in Understanding Application Behavior? (2511.12576v1)

Published 16 Nov 2025 in cs.SE

Abstract: Generative AI (GenAI) models, particularly LLMs, have transformed multiple domains, including natural language processing, software analysis, and code understanding. Their ability to analyze and generate code has enabled applications such as source code summarization, behavior analysis, and malware detection. In this study, we systematically evaluate the capabilities of both small and large GenAI LLMs in understanding application behavior, with a particular focus on malware detection as a representative task. While larger models generally achieve higher overall accuracy, our experiments show that small GenAI models maintain competitive precision and recall, offering substantial advantages in computational efficiency, faster inference, and deployment in resource-constrained environments. We provide a detailed comparison across metrics such as accuracy, precision, recall, and F1-score, highlighting each model's strengths, limitations, and operational feasibility. Our findings demonstrate that small GenAI models can effectively complement large ones, providing a practical balance between performance and resource efficiency in real-world application behavior analysis.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.