Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Machine Learning Model Efficiency through Quantization and Bit Depth Optimization: A Performance Analysis on Healthcare Data (2511.12568v1)

Published 16 Nov 2025 in cs.LG and cs.AI

Abstract: This research aims to optimize intricate learning models by implementing quantization and bit-depth optimization techniques. The objective is to significantly cut time complexity while preserving model efficiency, thus addressing the challenge of extended execution times in intricate models. Two medical datasets were utilized as case studies to apply a Logistic Regression (LR) machine learning model. Using efficient quantization and bit depth optimization strategies the input data is downscaled from float64 to float32 and int32. The results demonstrated a significant reduction in time complexity, with only a minimal decrease in model accuracy post-optimization, showcasing the state-of-the-art optimization approach. This comprehensive study concludes that the impact of these optimization techniques varies depending on a set of parameters.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.