Papers
Topics
Authors
Recent
Search
2000 character limit reached

LOBERT: Generative AI Foundation Model for Limit Order Book Messages

Published 16 Nov 2025 in cs.AI | (2511.12563v1)

Abstract: Modeling the dynamics of financial Limit Order Books (LOB) at the message level is challenging due to irregular event timing, rapid regime shifts, and the reactions of high-frequency traders to visible order flow. Previous LOB models require cumbersome data representations and lack adaptability outside their original tasks, leading us to introduce LOBERT, a general-purpose encoder-only foundation model for LOB data suitable for downstream fine-tuning. LOBERT adapts the original BERT architecture for LOB data by using a novel tokenization scheme that treats complete multi-dimensional messages as single tokens while retaining continuous representations of price, volume, and time. With these methods, LOBERT achieves leading performance in tasks such as predicting mid-price movements and next messages, while reducing the required context length compared to previous methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.