Papers
Topics
Authors
Recent
2000 character limit reached

Training Instabilities Induce Flatness Bias in Gradient Descent (2511.12558v1)

Published 16 Nov 2025 in cs.LG

Abstract: Classical analyses of gradient descent (GD) define a stability threshold based on the largest eigenvalue of the loss Hessian, often termed sharpness. When the learning rate lies below this threshold, training is stable and the loss decreases monotonically. Yet, modern deep networks often achieve their best performance beyond this regime. We demonstrate that such instabilities induce an implicit bias in GD, driving parameters toward flatter regions of the loss landscape and thereby improving generalization. The key mechanism is the Rotational Polarity of Eigenvectors (RPE), a geometric phenomenon in which the leading eigenvectors of the Hessian rotate during training instabilities. These rotations, which increase with learning rates, promote exploration and provably lead to flatter minima. This theoretical framework extends to stochastic GD, where instability-driven flattening persists and its empirical effects outweigh minibatch noise. Finally, we show that restoring instabilities in Adam further improves generalization. Together, these results establish and understand the constructive role of training instabilities in deep learning.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.