Papers
Topics
Authors
Recent
2000 character limit reached

On the Dimension-Free Approximation of Deep Neural Networks for Symmetric Korobov Functions (2511.12398v1)

Published 16 Nov 2025 in cs.LG and math.NA

Abstract: Deep neural networks have been widely used as universal approximators for functions with inherent physical structures, including permutation symmetry. In this paper, we construct symmetric deep neural networks to approximate symmetric Korobov functions and prove that both the convergence rate and the constant prefactor scale at most polynomially with respect to the ambient dimension. This represents a substantial improvement over prior approximation guarantees that suffer from the curse of dimensionality. Building on these approximation bounds, we further derive a generalization-error rate for learning symmetric Korobov functions whose leading factors likewise avoid the curse of dimensionality.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.