Quantum Optimization Algorithms
Abstract: Quantum optimization allows for up to exponential quantum speedups for specific, possibly industrially relevant problems. As the key algorithm in this field, we motivate and discuss the Quantum Approximate Optimization Algorithm (QAOA), which can be understood as a slightly generalized version of Quantum Annealing for gate-based quantum computers. We delve into the quantum circuit implementation of the QAOA, including Hamiltonian simulation techniques for higher-order Ising models, and discuss parameter training using the parameter shift rule. An example implementation with Pennylane source code demonstrates practical application for the Maximum Cut problem. Further, we show how constraints can be incorporated into the QAOA using Grover mixers, allowing to restrict the search space to strictly valid solutions for specific problems. Finally, we outline the Variational Quantum Eigensolver (VQE) as a generalization of the QAOA, highlighting its potential in the NISQ era and addressing challenges such as barren plateaus and ansatz design.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.