Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Optimization Algorithms

Published 15 Nov 2025 in quant-ph and cs.AI | (2511.12379v1)

Abstract: Quantum optimization allows for up to exponential quantum speedups for specific, possibly industrially relevant problems. As the key algorithm in this field, we motivate and discuss the Quantum Approximate Optimization Algorithm (QAOA), which can be understood as a slightly generalized version of Quantum Annealing for gate-based quantum computers. We delve into the quantum circuit implementation of the QAOA, including Hamiltonian simulation techniques for higher-order Ising models, and discuss parameter training using the parameter shift rule. An example implementation with Pennylane source code demonstrates practical application for the Maximum Cut problem. Further, we show how constraints can be incorporated into the QAOA using Grover mixers, allowing to restrict the search space to strictly valid solutions for specific problems. Finally, we outline the Variational Quantum Eigensolver (VQE) as a generalization of the QAOA, highlighting its potential in the NISQ era and addressing challenges such as barren plateaus and ansatz design.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.