Papers
Topics
Authors
Recent
2000 character limit reached

Privacy-Preserving Prompt Injection Detection for LLMs Using Federated Learning and Embedding-Based NLP Classification (2511.12295v1)

Published 15 Nov 2025 in cs.CR

Abstract: Prompt injection attacks are an emerging threat to LLMs, enabling malicious users to manipulate outputs through carefully designed inputs. Existing detection approaches often require centralizing prompt data, creating significant privacy risks. This paper proposes a privacy-preserving prompt injection detection framework based on federated learning and embedding-based classification. A curated dataset of benign and adversarial prompts was encoded with sentence embedding and used to train both centralized and federated logistic regression models. The federated approach preserved privacy by sharing only model parameters across clients, while achieving detection performance comparable to centralized training. Results demonstrate that effective prompt injection detection is feasible without exposing raw data, making this one of the first explorations of federated security for LLMs. Although the dataset is limited in scale, the findings establish a strong proof-of-concept and highlight new directions for building secure and privacy-aware LLM systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.