DataOps-driven CI/CD for analytics repositories (2511.12277v1)
Abstract: The proliferation of SQL for data processing has often occurred without the rigor of traditional software development, leading to siloed efforts, logic replication, and increased risk. This ad-hoc approach hampers data governance and makes validation nearly impossible. Organizations are adopting DataOps, a methodology combining Agile, Lean, and DevOps principles to address these challenges to treat analytics pipelines as production systems. However, a standardized framework for implementing DataOps is lacking. This perspective proposes a qualitative design for a DataOps-aligned validation framework. It introduces a DataOps Controls Scorecard, derived from a multivocal literature review, which distills key concepts into twelve testable controls. These controls are then mapped to a modular, extensible CI/CD pipeline framework designed to govern a single source of truth (SOT) SQL repository. The framework consists of five stages: Lint, Optimize, Parse, Validate, and Observe, each containing specific, automated checks. A Requirements Traceability Matrix (RTM) demonstrates how each high-level control is enforced by concrete pipeline checks, ensuring qualitative completeness. This approach provides a structured mechanism for enhancing data quality, governance, and collaboration, allowing teams to scale analytics development with transparency and control.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.