Prompt-Conditioned FiLM and Multi-Scale Fusion on MedSigLIP for Low-Dose CT Quality Assessment (2511.12256v1)
Abstract: We propose a prompt-conditioned framework built on MedSigLIP that injects textual priors via Feature-wise Linear Modulation (FiLM) and multi-scale pooling. Text prompts condition patch-token features on clinical intent, enabling data-efficient learning and rapid adaptation. The architecture combines global, local, and texture-aware pooling through separate regression heads fused by a lightweight MLP, trained with pairwise ranking loss. Evaluated on the LDCTIQA2023 (a public LDCT quality assessment challenge) with 1,000 training images, we achieve PLCC = 0.9575, SROCC = 0.9561, and KROCC = 0.8301, surpassing the top-ranked published challenge submissions and demonstrating the effectiveness of our prompt-guided approach.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.